Clinicopathologic Features of Human Papillomavirus Dependent and Independent Vulvar Squamous Cell Carcinoma

MICHAELA KOP PI: KOAH VIERKOETTER, MD 2021 QUEEN'S SUMMER RESEARCH INTERNSHIP

Vulvar Squamous Cell Carcinoma Overview

- Vulvar squamous cell carcinoma (VSCC) can arise in through two distinct pathways:
 - HPV-dependent pathway
 - HPV-independent pathway
- VSCC is preceded by precursor lesions associated the HPV-dependent and HPVindependent pathways
- HOWEVER, it is difficult to determine HPV status based on morphology alone
- Immunohistochemical staining:
 - p16 can act as a surrogate marker for HPV
 - Some precursor lesions are both p16- **and** p53 WT (VAAD and DEVIL)

VSCC Histology

Rates of VSCC Based on HPV Status

Study	Percent HPV-related
Allo et al. (2019) n=144; Canada	32% HPV-related
Hinten et al. (2018) n=318; Netherlands	17% HPV-related
McAlpine et al. (2017) n=197; Canada	40% HPV-related
Wakeham et al. (2017) n=62; United Kingdom	52% HPV-related
Lee et al. (2016) n=57; United States	27% HPV-related
Alonso et al. (2011) n=98; Spain	19% HPV-related
Pinto et al. (2004) n=161; Brazil	23% HPV-related

- Incidence of HPV-related VSCC varies depending on location of study (Rakislova, 2017)
- HPV-positivity ranges from 18% 75% (Rakislova, 2017)
- No previous investigation of VSCC in Hawaii
- Thus, this study will yield data applicable to the diagnoses and treatment of Hawaii's diverse population.

Methods

- VSCC cases from 1995 2020 identified through a search of pathology database (CoPath)
- Tissue microarray (TMA) constructed by the University of Hawaii Cancer Center (UHCC) and subjected to P16 and P53 immunohistochemical (IHC) staining to determine HPV status
- IHC stains read by experienced gynecological pathologists, Dr. Koah
 Vierkoetter and Dr. David Shimizu
- Patient chart review conducted through a search of the EMR (CareLink)

Demographics

Table 1. Demographics

	n=67	Pathologic parameters	
Clinical parameters Age (years) Ethnicity (self-reported) (n=43)	69 (Range 33-93)	HPV status (p16 stain) HPV related HPV independent	34 33
White/Caucasian Asian Native Hawaiian/Pacific Islander Hispanic	20 19 3 1 24	Tumor size < 2.0 cm ≥ 2.0 cm	20 44
BMI (n=42) Underweight (<18.5) Normal (18.5 - 25.0)	8 11	Depth of invasion ≤1.0 mm >1.0 mm	7 54
Overweight/obese (>25.0) Unknown Smoking history (n=44)	23 25 27	Stage IA IB	9 40
No Unknown	27 17 23		6 12

HPV-related VSCC Incidence

VSCC Subtype Incidence in Hawaii

Table 2. Immunohistochemical results

	P53 status		
	p53 abnormal	p53 WT	Total
p16 + (HPV-related)	0	34	34
p16 – (HPV-independent)	16	17	33

Factors Associated With HPV Status

Table 3. Factors associated with HPV associated and independent status

	HPV associated (n=34)	HPV independent (n=33)	p value*
Age	62.79 (SD 15.42)	75.39 (SD 13.74)	<mark>0.0008</mark>
Smoking history (n=44)			
Yes (n=27)	15 F	12	0.1244
NO (n=1/)	5	12	
BMI (n=42) Not overweight/obese (≤25.0) Overweight/obese (>25.0)	8 11	11 12	0.7634
Tumor size (n=64) < 2.0 cm (n=20) ≥ 2.0 cm (n=44)	14 18	6 26	0.0577
Depth of invasion (n=61) ≤1.0 mm (n=7) >1.0 mm (n=54)	6 26	1 28	0.1064
Stage I (n=49) II-III (n=18)	28 6	21 12	0.1036

*p-value less than 0.05 (\leq 0.05) is considered statistically significant

Change in HPV-associated Cases Over Time

Changes in HPV-associated Cases Over Time

Table 4. Change in HPV-associated cases over time

	HPV Associated	HPV Independent
1991-2000	11	5
2001-2010	12	10
2011-2020	11	18

Discussion & Conclusions

- Younger average age for HPV-associated VSCC(63 yrs) and higher average age for HPVindependent VSCC (75 yrs)
 - Agrees with literature HPV-independent VSCC affects older women while HPV-related VSCC affects relatively younger women (Weinberg, 2019)
- ▶ 51% of VSCC cases in Hawaii are HPV-related
- > 25% of VSCC cases in Hawaii are HPV-independent and P53 WT

Acknowledgements

- Research Participants
- Primary Investigator Dr. Koah Vierkoetter
- Coinvestigators Dr. David Shimizu & Dr. Keith Terada
- Queen's Medical Center Pathology Department
- University of Hawaii Cancer Center
- Queen's Medical Center Summer Research Internship
- Other Collaborators Dr. Asia Ayabe & Dr. Mayumi Fernandez

References

- 1. Alonso I, Fusté V, del Pino M, et al. Does human papillomavirus infection imply a different prognosis in vulvar squamous cell carcinoma? *Gynecologic Oncology*. 2011;122(3):509-514. doi:10.1016/j.ygyno.2011.05.016
- 2. Rakislova N, Clavero O, Alemany L, et al. "Histological characteristics of HPV-associated and -independent squamous cell carcinomas of the vulva: A study of 1,594 cases": HPV in vulvar cancer. Int J Cancer. 2017;141(12):2517-2527. doi:10.1002/ijc.31006
- 3. Wakeham K, Kavanagh K, Cuschieri K, et al. HPV status and favourable outcome in vulvar squamous cancer: HPV status and vulvar cancer. Int J Cancer. 2017;140(5):1134-1146. doi:10.1002/ijc.30523
- 4. Allo G, Yap ML, Cuartero J, et al. HPV-independent Vulvar Squamous Cell Carcinoma is Associated With Significantly Worse Prognosis Compared With HPV-associated Tumors. International Journal of Gynecological Pathology. 2020;39(4):391-399. doi:10.1097/PGP.00000000000620
- 5. McAlpine JN, Leung SCY, Cheng A, et al. Human papillomavirus (HPV)-independent vulvar squamous cell carcinoma has a worse prognosis than HPV-associated disease: a retrospective cohort study. *Histopathology*. 2017;71(2):238-246. doi:10.1111/his.13205
- 6. Lee LJ, Howitt B, Catalano P, et al. Prognostic importance of human papillomavirus (HPV) and p16 positivity in squamous cell carcinoma of the vulva treated with radiotherapy. *Gynecologic Oncology*. 2016;142(2):293-298. doi:10.1016/j.ygyno.2016.05.019
- 7. Pinto ÁP, Schlecht NF, Pintos J, et al. Prognostic significance of lymph node variables and human papillomavirus DNA in invasive vulvar carcinoma. *Gynecologic Oncology*. 2004;92(3):856-865. doi:10.1016/j.ygyno.2003.11.052
- 8. Weinberg D, Gomez-Martinez RA. Vulvar Cancer. Obstetrics and Gynecology Clinics of North America. 2019;46(1):125-135. doi:10.1016/j.ogc.2018.09.008
- 9. Hinten F, Molijn A, Eckhardt L, et al. Vulvar cancer: Two pathways with different localization and prognosis. *Gynecologic Oncology*. 2018;149(2):310-317. doi:10.1016/j.ygyno.2018.03.003

