
Introduction
o Hepatocellular carcinoma (HCC), which comprises the majority of liver

cancers, is also the fifth-‐most common cancer and the third leading cause of
cancer-‐related deaths worldwide [1].

o Metabolomics is the systematic and large-‐scale study of small molecules,
known as metabolites, within living systems such as, cells, biofluids, tissues,
and micro-‐organisms [2].

o Tumors may differ significantly from adjacent normal tissue with regards to
chemical and structural composition, resulting in pathobiologically
significant alterations in their metabolomic profiles.

o Machine learning (ML) can be applied to distinguish patterns in
metabolomics data to allow for more accurate classification performance
than traditional statistical models [3].

o The goal of this research study is to identify metabolite signatures which
may distinguish HCC from non-‐tumor liver tissue. In addition to their
potential use as diagnostic classifiers, such signatures may also aid in
identifying biochemical alterations associated with tumor features.

o As a first step of investigation, we evaluated three ML algorithms – support
vector machine (SVM), partial least squares discriminant analysis (PLS-‐DA),
and random forest (RF) – for metabolite signature discovery, using receiver
operating characteristic (ROC) analysis to compare the classification
performance of these algorithms across different classes of metabolites.
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Conclusions	  and	  Future	  Directions
o For the FFA and Lipids, SVM was the best at discriminating between tumor and non-‐tumor sample (Figure 2), and between true negatives and positives in

cross validation. However, for SM and BA, the RF algorithm performed better.
o At times, one algorithm worked better with fewer variables while another at a higher number of variables (Figure 5), but all worked generally well.

Among	  the	  three	  ML	  algorithms,	  the	  support	  vector	  machine	  learning	  algorithm	  was	  associated	  with	  the	  highest	  AUC	  values	  for	  
the	  free	  fatty	  acids	  and	  the	  phospholipids	  (Figure	  5);	  BUT the	  random	  forest	  machine	  learning	  was	  associated	  with	  the	  highest	  AUC	  values	  

for	  the	  small	  molecules	  and	  bile	  acids.	  

o Nonetheless, there was no statistically significant difference between any of the three algorithms; null hypothesis accepted.
o Using the RF algorithm, AUC values of signatures derived from each metabolite class was compared as part of the DISCOVERY phase for a metabolomic

signature that could potentially discriminate HCC. Signatures derived from phospholipid metabolites were found to consistently outperform signatures
derived from other metabolite classes, and in particular those derived from bile acid metabolites.

Based	  on	  the	  results,	  we	  now	  hypothesize	  that	  phospholipid	  signatures	  have	  the	  potential	  to	  accurately	  distinguish	  between	  HCC	  and	  
normal	  liver	  tissue	  (Figure	  6,	  Table	  1).	  

o Future directions will include identifying the cellular pathways associated with the metabolomic signatures identified in this study. Specifically, molecular
pathway analysis will be performed based on the differentially expressed metabolites identified by ML in this study. Cellular and molecular pathways
identified in this manner could potentially be exploited for therapeutic gain in HCC.

o We will also pursue further TESTING and VALIDATION to determine whether phospholipid signatures can serve as robust biomarkers for clinical diagnosis
or molecular sub-‐classification of HCC.

Materials	  and	  Methods
Patient Cohort
o Between February 2012 and March 2017, 53 patients diagnosed with HCC

gave written informed consent to provide liver tissue samples for this
research study. All samples were stored in liquid nitrogen following surgical
tumor resection.

o Patients over 350 pounds, pregnant or lactating, had a serious underlying
medical condition, or received chemotherapeutic, molecularly targeted,
biological, or radiotherapeutic treatment for HCC were excluded from
participating in the research study [2].

Metabolomic Analyses
o Targeted metabolomics was carried out using both ultra-‐performance

liquid chromatography coupled to tandem mass spectrometry (UPLC-‐
MS/MS) and gas chromatography time-‐of-‐flight mass spectrometry (GC-‐
TOFMS). Quantification using authentic standards resulted in profiles of
the following classes of metabolites: bile acids (BA, 42 metabolites), small
molecules (SM) and free fatty acids (FFA) (128 metabolites in total), and
phospholipids (lipids, 109 metabolites). Samples and compounds that
were not successfully profiled with significant loss of data (10% missing
data) were not included in the analysis.

MetaboAnalyst
o Biomarker discovery was carried out using Metaboanalyst 4.0 (McGill

University). Software packages for biomarker discovery and evaluation
were accessed via the ‘metaboanalyst.ca’ web-‐portal and also
implemented locally using the R package MetaboanalystR 2.0. Missing-‐
value imputation was performed by K-‐nearest neighbor (KNN). Metabolite
concentration values were quantile normalized, log transformed, and
mean-‐centered. ROC curves and areas under the ROC curves (AUC) were
calculated to evaluate the classification performance of each ML algorithm.

Results

Figure	  1.	  	  Example	  of	  box	  plots	  and	  kernel	  density	  plots	  before	  and	  after	  
normalization.	  Normalization	  is	  essential	  to	  optimize	  and	  eventually	  
generalize	  the	  performance	  of	  ML	  classifiers.	  	  Successful	  normalization	  of	  
the	  datasets	  for	  all	  metabolite	  classes	  was	  achieved.	  The	  normalization	  
results	  of	  a	  profile	  comprised	  of	  107	  phospholipids	  are	  shown	  above	  as	  an	  
example.

Figure	  3.	  ROC	  curve	  based	  on	  lipid	  
signatures	  derived	  from	  PLS-‐DA.

Figure	  4.	  ROC	  curve	  based	  on	  lipid	  
signatures	  derived	  from	  RF	  ML.

Figure	  2.	  ROC	  curve	  based	  on	  lipid	  
signatures	  derived	  from	  SVM.

Metabolite	  class
Number of	  
Metabolites AUC

Lower	  bound	  
95%	  CI

Upper	  bound
95%	  CI

Small	  molecules	  
(including	  amino	  
acids	  and	  energy	  
metabolites)

3 0.807 0.669 0.922
5 0.89 0.752 0.989
10 0.934 0.843 0.991
20 0.947 0.838 1
38 0.943 0.839 1

Bile	  Acids 2 0.681 0.44 0.869
3 0.678 0.448 0.855
5 0.688 0.446 0.854
10 0.695 0.51 0.83
20 0.678 0.498 0.838
42 0.682 0.514 0.8

Free	  Fatty	  Acids 2 0.839 0.63 0.975
3 0.861 0.593 0.979
5 0.892 0.676 0.977
10 0.895 0.779 0.969
20 0.858 0.731 0.953
47 0.829 0.712 0.927

Phospholipids 5 0.924 0.818 0.979
10 0.963 0.891 0.999
15 0.978 0.896 1
25 0.986 0.94 1
50 0.991 0.969 1

Table	  1
Areas	  under	  the	  ROC	  curve	  values	  (AUC)	  for	  the	  first	  50	  variables	  of	  each	  metabolite	  
class	  using	  SVM	  ML	  algorithm.	  Signatures	  using	  10	  metabolites	  shown	  in	  bold	  to	  point	  
out	  their	  relative	  performance	  (BA	  <	  FFA	  <	  SM	  <	  Phospholipids).

Figure	  5.	  An	  example	  of	  how	  we	  
compared	  the	  ML	  algorithms	  based	  
on	  their	  AUC	  values.	  	  AUC	  reflects	  
overall	  classification	  performance	  
for	  distinguishing	  HCC	  from	  liver	  
tissue.	  Performance	  is	  shown	  as	  a	  
function	  of	  the	  number	  of	  variables	  
(i.e.	  metabolites)	  in	  the	  signature.	  	  
This	  example	  is	  from	  our	  analysis	  of	  
phospholipid	  signatures,	  which	  
performed	  the	  best	  from	  among	  
signatures	  that	  included	  SM,	  BA,	  
and	  FFA	  metabolites	  (see	  Table	  1).	   Figure	  6.	  After	  we	  identified	  that	  the	  SVM	  ML	  algorithm	  

consistently	  performed	  better	  than	  PLS-‐DA	  and	  RF	  in	  the	  
lipid	  data,	  we	  compared	  signatures	  derived	  by	  SVM	  ML	  for	  
the	  four	  metabolite	  classes	  (SM,	  BA,	  FFA,	  and	  Lipids).	  	  The	  
lipid	  signatures	  consistently	  outperformed	  other	  signatures	  
derived	  from	  SM,	  BA,	  and	  FFA	  metabolites	  regardless	  of	  the	  
signature	  size	  (shown	  as	  number	  of	  variables)

Figure	  7.	  Comparison	  of	  AUC	  values	  (with	  95%	  confidence	  
interval	  bands)	  for	  signatures	  derived	  from	  bile	  acids	  
versus	  phospholipids.	  With	  the	  SVM	  ML	  algorithm,	  the	  
AUC	  values	  corresponding	  to	  lipid	  signatures	  were	  
significantly	  higher	  than	  those	  corresponding	  to	  BA	  as	  
signature	  size	  increased	  to	  >	  10	  metabolites.	  	  Therefore,	  
lipid	  signatures	  are	  expected	  to	  outperform	  bile	  acid	  
signatures	  for	  distinguishing	  HCC	  from	  normal	  liver	  tissue.	  	  
As	  this	  study	  comprised	  only	  a	  discovery	  phase,	  further	  
testing	  and	  validation	  in	  other	  datasets	  will	  be	  necessary	  
to	  confirm	  the	  diagnostic	  performance	  of	  lipid	  signatures	  
for	  HCC.
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