
Introduction
o Hepatocellular carcinoma (HCC), which comprises the majority of liver

cancers, is also the fifth-­‐most common cancer and the third leading cause of
cancer-­‐related deaths worldwide [1].

o Metabolomics is the systematic and large-­‐scale study of small molecules,
known as metabolites, within living systems such as, cells, biofluids, tissues,
and micro-­‐organisms [2].

o Tumors may differ significantly from adjacent normal tissue with regards to
chemical and structural composition, resulting in pathobiologically
significant alterations in their metabolomic profiles.

o Machine learning (ML) can be applied to distinguish patterns in
metabolomics data to allow for more accurate classification performance
than traditional statistical models [3].

o The goal of this research study is to identify metabolite signatures which
may distinguish HCC from non-­‐tumor liver tissue. In addition to their
potential use as diagnostic classifiers, such signatures may also aid in
identifying biochemical alterations associated with tumor features.

o As a first step of investigation, we evaluated three ML algorithms – support
vector machine (SVM), partial least squares discriminant analysis (PLS-­‐DA),
and random forest (RF) – for metabolite signature discovery, using receiver
operating characteristic (ROC) analysis to compare the classification
performance of these algorithms across different classes of metabolites.
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Conclusions	
  and	
  Future	
  Directions
o For the FFA and Lipids, SVM was the best at discriminating between tumor and non-­‐tumor sample (Figure 2), and between true negatives and positives in

cross validation. However, for SM and BA, the RF algorithm performed better.
o At times, one algorithm worked better with fewer variables while another at a higher number of variables (Figure 5), but all worked generally well.

Among	
  the	
  three	
  ML	
  algorithms,	
  the	
  support	
  vector	
  machine	
  learning	
  algorithm	
  was	
  associated	
  with	
  the	
  highest	
  AUC	
  values	
  for	
  
the	
  free	
  fatty	
  acids	
  and	
  the	
  phospholipids	
  (Figure	
  5);	
  BUT the	
  random	
  forest	
  machine	
  learning	
  was	
  associated	
  with	
  the	
  highest	
  AUC	
  values	
  

for	
  the	
  small	
  molecules	
  and	
  bile	
  acids.	
  

o Nonetheless, there was no statistically significant difference between any of the three algorithms; null hypothesis accepted.
o Using the RF algorithm, AUC values of signatures derived from each metabolite class was compared as part of the DISCOVERY phase for a metabolomic

signature that could potentially discriminate HCC. Signatures derived from phospholipid metabolites were found to consistently outperform signatures
derived from other metabolite classes, and in particular those derived from bile acid metabolites.

Based	
  on	
  the	
  results,	
  we	
  now	
  hypothesize	
  that	
  phospholipid	
  signatures	
  have	
  the	
  potential	
  to	
  accurately	
  distinguish	
  between	
  HCC	
  and	
  
normal	
  liver	
  tissue	
  (Figure	
  6,	
  Table	
  1).	
  

o Future directions will include identifying the cellular pathways associated with the metabolomic signatures identified in this study. Specifically, molecular
pathway analysis will be performed based on the differentially expressed metabolites identified by ML in this study. Cellular and molecular pathways
identified in this manner could potentially be exploited for therapeutic gain in HCC.

o We will also pursue further TESTING and VALIDATION to determine whether phospholipid signatures can serve as robust biomarkers for clinical diagnosis
or molecular sub-­‐classification of HCC.

Materials	
  and	
  Methods
Patient Cohort
o Between February 2012 and March 2017, 53 patients diagnosed with HCC

gave written informed consent to provide liver tissue samples for this
research study. All samples were stored in liquid nitrogen following surgical
tumor resection.

o Patients over 350 pounds, pregnant or lactating, had a serious underlying
medical condition, or received chemotherapeutic, molecularly targeted,
biological, or radiotherapeutic treatment for HCC were excluded from
participating in the research study [2].

Metabolomic Analyses
o Targeted metabolomics was carried out using both ultra-­‐performance

liquid chromatography coupled to tandem mass spectrometry (UPLC-­‐
MS/MS) and gas chromatography time-­‐of-­‐flight mass spectrometry (GC-­‐
TOFMS). Quantification using authentic standards resulted in profiles of
the following classes of metabolites: bile acids (BA, 42 metabolites), small
molecules (SM) and free fatty acids (FFA) (128 metabolites in total), and
phospholipids (lipids, 109 metabolites). Samples and compounds that
were not successfully profiled with significant loss of data (10% missing
data) were not included in the analysis.

MetaboAnalyst
o Biomarker discovery was carried out using Metaboanalyst 4.0 (McGill

University). Software packages for biomarker discovery and evaluation
were accessed via the ‘metaboanalyst.ca’ web-­‐portal and also
implemented locally using the R package MetaboanalystR 2.0. Missing-­‐
value imputation was performed by K-­‐nearest neighbor (KNN). Metabolite
concentration values were quantile normalized, log transformed, and
mean-­‐centered. ROC curves and areas under the ROC curves (AUC) were
calculated to evaluate the classification performance of each ML algorithm.

Results

Figure	
  1.	
  	
  Example	
  of	
  box	
  plots	
  and	
  kernel	
  density	
  plots	
  before	
  and	
  after	
  
normalization.	
  Normalization	
  is	
  essential	
  to	
  optimize	
  and	
  eventually	
  
generalize	
  the	
  performance	
  of	
  ML	
  classifiers.	
  	
  Successful	
  normalization	
  of	
  
the	
  datasets	
  for	
  all	
  metabolite	
  classes	
  was	
  achieved.	
  The	
  normalization	
  
results	
  of	
  a	
  profile	
  comprised	
  of	
  107	
  phospholipids	
  are	
  shown	
  above	
  as	
  an	
  
example.

Figure	
  3.	
  ROC	
  curve	
  based	
  on	
  lipid	
  
signatures	
  derived	
  from	
  PLS-­‐DA.

Figure	
  4.	
  ROC	
  curve	
  based	
  on	
  lipid	
  
signatures	
  derived	
  from	
  RF	
  ML.

Figure	
  2.	
  ROC	
  curve	
  based	
  on	
  lipid	
  
signatures	
  derived	
  from	
  SVM.

Metabolite	
  class
Number of	
  
Metabolites AUC

Lower	
  bound	
  
95%	
  CI

Upper	
  bound
95%	
  CI

Small	
  molecules	
  
(including	
  amino	
  
acids	
  and	
  energy	
  
metabolites)

3 0.807 0.669 0.922
5 0.89 0.752 0.989
10 0.934 0.843 0.991
20 0.947 0.838 1
38 0.943 0.839 1

Bile	
  Acids 2 0.681 0.44 0.869
3 0.678 0.448 0.855
5 0.688 0.446 0.854
10 0.695 0.51 0.83
20 0.678 0.498 0.838
42 0.682 0.514 0.8

Free	
  Fatty	
  Acids 2 0.839 0.63 0.975
3 0.861 0.593 0.979
5 0.892 0.676 0.977
10 0.895 0.779 0.969
20 0.858 0.731 0.953
47 0.829 0.712 0.927

Phospholipids 5 0.924 0.818 0.979
10 0.963 0.891 0.999
15 0.978 0.896 1
25 0.986 0.94 1
50 0.991 0.969 1

Table	
  1
Areas	
  under	
  the	
  ROC	
  curve	
  values	
  (AUC)	
  for	
  the	
  first	
  50	
  variables	
  of	
  each	
  metabolite	
  
class	
  using	
  SVM	
  ML	
  algorithm.	
  Signatures	
  using	
  10	
  metabolites	
  shown	
  in	
  bold	
  to	
  point	
  
out	
  their	
  relative	
  performance	
  (BA	
  <	
  FFA	
  <	
  SM	
  <	
  Phospholipids).

Figure	
  5.	
  An	
  example	
  of	
  how	
  we	
  
compared	
  the	
  ML	
  algorithms	
  based	
  
on	
  their	
  AUC	
  values.	
  	
  AUC	
  reflects	
  
overall	
  classification	
  performance	
  
for	
  distinguishing	
  HCC	
  from	
  liver	
  
tissue.	
  Performance	
  is	
  shown	
  as	
  a	
  
function	
  of	
  the	
  number	
  of	
  variables	
  
(i.e.	
  metabolites)	
  in	
  the	
  signature.	
  	
  
This	
  example	
  is	
  from	
  our	
  analysis	
  of	
  
phospholipid	
  signatures,	
  which	
  
performed	
  the	
  best	
  from	
  among	
  
signatures	
  that	
  included	
  SM,	
  BA,	
  
and	
  FFA	
  metabolites	
  (see	
  Table	
  1).	
   Figure	
  6.	
  After	
  we	
  identified	
  that	
  the	
  SVM	
  ML	
  algorithm	
  

consistently	
  performed	
  better	
  than	
  PLS-­‐DA	
  and	
  RF	
  in	
  the	
  
lipid	
  data,	
  we	
  compared	
  signatures	
  derived	
  by	
  SVM	
  ML	
  for	
  
the	
  four	
  metabolite	
  classes	
  (SM,	
  BA,	
  FFA,	
  and	
  Lipids).	
  	
  The	
  
lipid	
  signatures	
  consistently	
  outperformed	
  other	
  signatures	
  
derived	
  from	
  SM,	
  BA,	
  and	
  FFA	
  metabolites	
  regardless	
  of	
  the	
  
signature	
  size	
  (shown	
  as	
  number	
  of	
  variables)

Figure	
  7.	
  Comparison	
  of	
  AUC	
  values	
  (with	
  95%	
  confidence	
  
interval	
  bands)	
  for	
  signatures	
  derived	
  from	
  bile	
  acids	
  
versus	
  phospholipids.	
  With	
  the	
  SVM	
  ML	
  algorithm,	
  the	
  
AUC	
  values	
  corresponding	
  to	
  lipid	
  signatures	
  were	
  
significantly	
  higher	
  than	
  those	
  corresponding	
  to	
  BA	
  as	
  
signature	
  size	
  increased	
  to	
  >	
  10	
  metabolites.	
  	
  Therefore,	
  
lipid	
  signatures	
  are	
  expected	
  to	
  outperform	
  bile	
  acid	
  
signatures	
  for	
  distinguishing	
  HCC	
  from	
  normal	
  liver	
  tissue.	
  	
  
As	
  this	
  study	
  comprised	
  only	
  a	
  discovery	
  phase,	
  further	
  
testing	
  and	
  validation	
  in	
  other	
  datasets	
  will	
  be	
  necessary	
  
to	
  confirm	
  the	
  diagnostic	
  performance	
  of	
  lipid	
  signatures	
  
for	
  HCC.
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